
The guide to defining a custom Xillybus IP core

Xillybus Ltd.

www.xillybus.com

Version 2.1

1 Introduction 2

2 Defining custom IP cores 4

2.1 Overview . 4

2.2 The device file’s name . 4

2.3 Data width . 5

2.4 Synchronous or asynchronous stream 6

2.5 DMA buffer size and count . 6

2.6 DMA acceleration . 7

2.7 Buffering time . 8

3 Scalability and logic resource consumption 10

3.1 General . 10

3.2 Block RAMs . 10

3.3 Logic fabric resources . 11

4 Revision B and XL IP cores 14

4.1 General . 14

4.2 Matching demo bundles . 15

4.3 Logic resource consumption . 15

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

1
Introduction

Xillybus is a multi-purpose platform for a variety of applications. As such, the delivered
IP core is easily configured to meet specific requirements in terms of the number of
streams, their direction, attributes related to their performance and consumption of
resources.

Custom IPs are generated for evaluation and licensing alike. Xillybus’ “try it first” policy
encourages potential licensees to request a tailored version of the Xillybus IP core for
evaluation under real-life conditions.

To simplify the definition and reception of custom IP cores, an online tool for instant
generation is available at http://xillybus.com/custom-ip-factory

This tool consists of a simple web interface, which allows the user to define the device
files requested and their configuration. Once the definition is complete and submitted,
an automatic process generates the bundle for inclusion in the FPGA project. The
custom IP core is ready for download after a short while, typically a few minutes.

The web interface may be used without reading this guide, but it’s recommended to
first familiarize yourself with Xillybus by running the demo bundle. Users who wish
to get a better understanding and control of the device files’ attributes, and set them
manually by disabling the “autoset” option, will find some background information in
this guide.

For users who have not yet familiarized themselves with the demo bundle, the follow-
ing documents are recommended for prior reading:

• Getting started with the FPGA demo bundle for Xilinx

• Getting started with the FPGA demo bundle for Altera

• Getting started with Xillinux for Zynq-7000 EPP

The guide to defining a custom Xillybus IP core 2

http://xillybus.com/
http://xillybus.com/custom-ip-factory
http://xillybus.com/downloads/doc/xillybus_getting_started_xilinx.pdf
http://xillybus.com/downloads/doc/xillybus_getting_started_altera.pdf
http://xillybus.com/downloads/doc/xillybus_getting_started_zynq.pdf

Xillybus Ltd. www.xillybus.com

• Getting started with Xillybus on a Linux host

• Getting started with Xillybus on a Windows host

• The guide to Xillybus Block Design Flow for non-HDL users

Even when the need for a custom IP core is clear, it’s best to start off with the demo
bundle’s IP core and project, as it shows how the IP core is integrated with the appli-
cation logic, and how the entire project should be set up.

All information about the IP core’s custom configuration is stored within the IP core
itself in the FPGA. The host driver retrieves this information at its initialization, so
there is no need to change anything on the host when switching from one Xillybus IP
configuration to another.

A common mistake is trying to minimize the number of streams configured, for the
sake of saving logic resources. Section 3 shows how a Xillybus IP core scales, and
explains why it makes sense allocating streams generously.

The guide to defining a custom Xillybus IP core 3

http://xillybus.com/
http://xillybus.com/downloads/doc/xillybus_getting_started_linux.pdf
http://xillybus.com/downloads/doc/xillybus_getting_started_windows.pdf
http://xillybus.com/downloads/doc/xillybus_block_design_flow.pdf

Xillybus Ltd. www.xillybus.com

2
Defining custom IP cores

2.1 Overview

The web tool provides a wizard-like interface for defining a custom IP core from
scratch, or using the configuration of the demo bundle’s core as a starting point.

There are a few points worth emphasizing when using this tool:

• For most purposes, it’s recommended to keep the “Autoset internals” option
selected when defining device files. Manual setting of the data flow control and
buffer attributes is likely to have a negative effect on performance.

• It’s important to set the target FPGA device family correctly, since the IP core is
delivered as an architecture-dependent netlist binary.

• It’s also important to set each device file’s “use” attribute to the description best
matching the intended purpose.

• The “Expected bandwidth” attribute required for each stream affects performance
tuning. Realistic ballpark figures should be applied, rather than attempting to
“push the tool” by exaggerating the requirements. Such exaggeration may result
in a performance hit on the device files that really need certain limited resources.

The rest of this section discusses some of the device files’ attributes.

2.2 The device file’s name

Each stream is designated a name, which appears in the host environment for its
unique identifications.

The guide to defining a custom Xillybus IP core 4

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

The names always take the form xillybus *, e.g. xillybus mystream.

On a Linux system, the stream is opened as a the plain file, e.g. /dev/xillybus mystream.
In Windows, the same stream appears as \\.\xillybus mystream.

A device file can represent two streams in opposite directions, which is just two
streams happening to share a device file name. These two streams can be opened
separately in either direction, or opened for read-write. This feature should be avoided
in general to prevent confusion, but is useful when the device file is passed to software
expecting a bidirectional pipe.

Older Linux kernels (e.g. 2.6.27) don’t accept device file names longer than 20 charac-
ters (the xillybus prefix included). Windows and Linux kernels after 2.6.38 are known
not to have this limitation on the name’s length.

2.3 Data width

The data width corresponds to the word fetched from or written to the FIFOs in the
FPGA. The allowed choices are 32, 16 or 8 bits (revision B/XL cores allow additional
widths, see section 4).

Streams requiring high bandwidth performance (efficient use of the underlying trans-
port, e.g. PCIe) must be set to use 32 bits data width. There’s a significant perfor-
mance degradation for 16 and 8-bit data width.

The reason is that the words are transported through the Xillybus internal data paths
at the bus clock rate. As a result, transporting an 8-bit word takes the same time slot
as a 32-bit word, making it effectively four times slower.

This also impacts other streams competing for the underlying transport at a given
time, since the data paths become occupied with slower data elements.

It’s good practice to perform I/O operations in the host application with data width
granularity, e.g. receive and send buffers with sizes that are a multiple of 4 if the data
width is 32 bits.

A poor choice of data width may lead to undesired behavior. For example, if an host-
to-FPGA link is 32 bits wide, writing 3 bytes of data at the host will make the driver
wait, possibly forever, for the fourth byte before sending anything to the FPGA.

The guide to defining a custom Xillybus IP core 5

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

2.4 Synchronous or asynchronous stream

This attribute is set automatically when the “Autoset internals” option is selected,
based upon the selection of the “use” setting.

In most cases, asynchronous streams are adequate for continuous data streams, and
synchronous streams are adequate for control data.

For synchronous streams, all I/O (including the data flow in the FPGA) takes place
only between the invocation and return of the system read() or write() call. This gives
full control on what happens when, but leaves the stream unused while the CPU is
doing other things. It’s recommended to read the elaboration on this subject in section
2 of one of these two documents:

• Xillybus host application programming guide for Linux

• Xillybus host application programming guide for Windows

Synchronous streams make the programming more intuitive, but have a negative im-
pact on bandwidth utilization. Asynchronous streams make it possible to maintain a
continuous data flow, despite the operating system depriving user space processes
from CPU for certain periods of time.

To summarize this subject, these are the guiding questions for either direction:

• For downstreams: Is it OK that a write() operation returns before the data has
reached the FPGA?

• For upstreams: Is it OK that the Xillybus core begins fetching data from the user
logic in the FPGA before a read() operation in the host requests it?

If the answer to the respective question is “no”, a synchronous stream is needed.
Otherwise, the asynchronous option is usually preferred, along with the understanding
that the data flow is slightly less intuitive.

2.5 DMA buffer size and count

Xillybus maintains an illusion of a continuous stream of data between the FPGA and
the host. The existence of DMA buffers is transparent to the user application logic in
the FPGA as well as the application on the host. They are of interest only to control
the efficiency of the data flow and its ability to remain continuous, in particular at high
data rates.

The guide to defining a custom Xillybus IP core 6

http://xillybus.com/
http://xillybus.com/downloads/doc/xillybus_host_programming_guide_linux.pdf
http://xillybus.com/downloads/doc/xillybus_host_programming_guide_windows.pdf

Xillybus Ltd. www.xillybus.com

It’s recommended to let the tools set up the DMA buffers’ parameters automatically by
enabling the “Autoset internals” in the web interface. Also see section 2.7.

The issue of DMA buffers is less significant for synchronous streams. For such, the
rule of thumb is that the total DMA space allocated for a stream (i.e. the size of each
buffer multiplied with their count) should be in the order of magnitude of the chunks
of data for which data is transported. There is rarely any point in making them larger
than a few kilobytes.

For asynchronous streams, the DMA buffer’s parameters have a significant impact
which is discussed in the section named “Continuous high rate I/O” in these two doc-
uments (it’s the same section):

• Xillybus host application programming guide for Linux

• Xillybus host application programming guide for Windows

Asynchronous streams essentially allow data to accumulate in the intermediate DMA
buffers, so when it reaches the final destination, it’s already “old”. There are two
aspects to be watchful about:

• The size of each underlying DMA buffer. This has a significance in streams from
the host to FPGA, since the data is sent to the FPGA when these buffers are full
(unless the buffer is flushed manually or by virtue of a timeout in the driver). The
size of each DMA buffer has therefore an impact of the typical latency of flowing
data.

• The total size of the DMA buffers (that is, the size of each buffer multiplied by
their number). For the sake of continuity, the larger the better, as the total DMA
space keeps the streaming smooth even when the CPU is deprived from the
application. Making a correct decision involves other factors, which are detailed
in the programming guides referenced just above.

2.6 DMA acceleration

Host to FPGA streams may sometimes require acceleration of the DMA data transfers,
when the underlying transport is PCIe.

The PCIe bus protocol states that the FPGA should issue requests for data from
the host and wait for the data to arrive. An inherent delay occurs as the request
travels along the bus fabric, is queued and handled by the host, and the data travels

The guide to defining a custom Xillybus IP core 7

http://xillybus.com/
http://xillybus.com/downloads/doc/xillybus_host_programming_guide_linux.pdf
http://xillybus.com/downloads/doc/xillybus_host_programming_guide_windows.pdf

Xillybus Ltd. www.xillybus.com

back. This turnaround time gap causes a certain degradation in the bus efficiency,
sometimes reducing the bandwidth of a single stream to as low as 40%.

To work around this issue, multiple data requests are sent, so that the host always
has a request in its queue during continuous transmissions. Since data from different
requests may arrive unordered, it must be stored in RAM buffers on the FPGA to
present an ordered stream of data to the application logic.

Each buffer in the FPGA is used to store a segment of requested data. The current
possible settings for DMA accelerations are

• None. No data is stored on the FPGA. Each request for data is sent only when
all data has arrived from the previous one.

• 4 segments of 512 bytes each. 2048 bytes of buffer space is allocated on the
FPGA. Up to four data requests can be “in flight” at any given moment.

• 8 segments of 512 bytes each. 4096 bytes of buffer space is allocated on the
FPGA. Up to eight data requests can be “in flight” at any given moment.

The turnaround time between a request and the data arrival depends on the host’s
hardware. The actual bandwidth performance may therefore vary.

When using the IP Core Factory, the automatic allocation of acceleration resources is
based upon measured results on typical PC hardware, and may need manual refine-
ments in rare cases.

2.7 Buffering time

Data capture and playback applications require a continuous flow of data at the FPGA,
or data is lost. To maintain this flow, a user-space application needs to make read()
or write() calls frequently enough to prevent the DMA buffers from overflowing or un-
derflowing (respectively).

Common operating systems, such as Linux and Windows, may deprive any user-
space application from the CPU for theoretically arbitrary periods of time. The FPGA
keeps filling or draining the DMA buffers during these periods of time, causing the
data flow to stall, unless the buffers are large enough.

When setting a Xillybus stream for a use requiring continuity, and choosing “Autoset
internals”, a “Buffering” selection box appears in the web interface. The time peri-
ods chosen should reflect the expected maximal CPU deprivation period. Choosing

The guide to defining a custom Xillybus IP core 8

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

“Maximum” tells the buffer allocation algorithm to attempt allocating as much RAM as
possible, with just some consideration for the other streams.

Given a desired buffering time t and an expected bandwidth W, the ideal total RAM
allocated for the DMA buffers of the stream, M, is

M = t x W

The actual buffer sizes are however always a power of 2. It may also turn out impos-
sible to allocate enough memory to meet the desired buffering time.

It is therefore important to look up the allocated buffer size in the core’s readme file,
and verify that it’s acceptable to work with. Setting the buffer size manually (i.e. turning
off “Autoset internals”) may be necessary to force a distribution of buffer RAM more
suitable for the target application.

The guide to defining a custom Xillybus IP core 9

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

3
Scalability and logic resource consumption

3.1 General

Xillybus was designed with scalability in mind. While it makes perfect sense to config-
ure a custom IP core for as little as a single stream, scaling up to a large number of
streams has a relatively small impact on the amount of logic consumed by the Xillybus
core.

In order to measure the logic resource consumption, successive builds of the Xillybus
IP core were made with an increasing number of streams. In all tests, the number
of streams from the FPGA to the host were the same as in the other direction. The
number of streams tested for ranged from 2 (one in each direction) to 64 (32 in each
direction).

This section outlines the logic consumption of the IP core itself on three FPGA devices
by Xilinx, as reported by their tools. Similar results are achieved on Altera devices and
other Xilinx device families.

3.2 Block RAMs

The number of block RAMs used by the Xillybus core varies between zero to a few
of them (3 block RAMs for 64 streams). There are no per-stream buffers inside the
Xillybus core. Rather, the Xillybus core relies on the FIFOs connected to it to collect
the data. Internally, the core has a single pool of memory used by all streams, storing
data for immediate transmission.

As the number of streams grow, block RAMs are chosen for efficient storage of host
DMA addresses.

The guide to defining a custom Xillybus IP core 10

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

Further block RAMs are allocated for DMA acceleration of host to FPGA streams as
required and detailed in the core’s readme file.

3.3 Logic fabric resources

The graphs below show the consumption of LUTs and registers (flip-flops) as the
number of streams go from 2 to 64. Each dot in those graphs is the de-facto use
resulting from the synthesis report. What is evident from these graphs is the nearly
linear growth in logic consumption. Regardless of the FPGA architecture, each stream
adds about 110 LUTs and 82 registers on the average.

The number of actual slices consumed on the FPGA depends on how well the logic
elements are packed into them. Each slice in Spartan-6 or Virtex-6 FPGAs can con-
tain up to 8 LUTs and 8 registers. Accordingly, a very optimistic approach would be to
assume that the registers are packed perfectly, so each stream adds only 110/8 =14
slices to the design. On the other hand, packing with half that efficiency is something
achievable with no considerable effort. So the expected cost in slices for a stream can
be estimated in the range of 14-28 slices.

It’s important to note that when the FPGA device isn’t nearly full, the Xilinx implemen-
tation tools don’t bother to pack logic into slices efficiently, so the increase in slice
count can be significantly steeper. This is merely a waste of resources there’s plenty
of anyhow.

The chosen setting for the benchmark test was 50% upstreams and 50% down-
streams. Real-life IP cores usually have an emphasis on either directions, but the
results below give an idea of what to expect.

The graphs follow. The slope may appear steep, but note that the stream count goes
from a minimal design (2 streams) to a rather heavy one (64 streams).

The bottom line is that it makes sense to allocate extra streams in the design, even
for the most trivial tasks, since their slice count contribution is fairly low.

The guide to defining a custom Xillybus IP core 11

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

The guide to defining a custom Xillybus IP core 12

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

The guide to defining a custom Xillybus IP core 13

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

4
Revision B and XL IP cores

4.1 General

Up to this point, this document has related to the revision A (baseline) IP core, which
is available since 2010. Revision B and XL cores were introduced in 2015, adapting
to de-facto needs of Xillybus’ user base. These cores will gradually replace Revision
A cores.

The new revisions (B and XL) offer a superset of features compared with revision
A, but are functionally equivalent when defined with the same attributes (with some
possible performance improvements).

The most notable differences are:

• Increased data bandwidth: Revision B cores’ aggregate bandwidth limit is ap-
proximately double of its revision A counterpart; revision XL cores supply about
four times as much bandwidth, compared with revision A.

• User interface data widths of 64, 128, and 256 bits are allowed in addition to
the already existing options of 8, 16 and 32 bits. These widths are allowed
regardless of the width of the data paths between Xillybus’ IP core and the PCIe
block in use.

• Faster logic design (easier to meet timing constraints), about 1 ns better on the
slowest path.

• The logic resources consumption is lower in most common cases (see section
4.3).

• The PCIe bandwidth utilization remains efficient regardless of the user interface

The guide to defining a custom Xillybus IP core 14

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

data width on revisions B and XL. This is contrary to the lower efficiency regard-
ing widths 8 and 16 bits on revision A.

• On Xilinx platforms, Revision B and XL are available only for the Vivado toolchain.

4.2 Matching demo bundles

Revision B IP cores are drop-in replacements for revision A cores. Hence, the baseline
demo bundle for the desired FPGA target should be used as a starting point. As this
demo bundle arrives with a revision A core, those who desire a revision B core should
configure and download it from the IP Core Factory.

Revision XL IP cores, on the other hand, require a dedicated demo bundle to work
against. It may be needed to request such demo bundles by email.

4.3 Logic resource consumption

Revision B/XL IP cores are optimized for speed and a slightly lower logic consumption,
at the cost of a slightly steeper logic consumption as the number of streams increases.

In order to quantify the use of logic resources, cores with an increasing number of
streams were generated, targeting Kintex-7. The cores were synthesized, and the
logic elements counted. As in section 3.3, the benchmark test was 50% upstreams
and 50% downstreams.

The following three charts compare the logic consumption of Revision A, B and XL IP
cores with equal settings. All tested streams were 32 bits wide.

Counting registers and LUTs, revision B cores outperform revision A cores when the
stream count is low, but lose this advantage as the streams mount up.

Revision XL cores consume more logic than both other revisions in all scenarios.

The chart for block RAMs shows that both revision B and XL consume double as many
block RAMs, compared with revision A.

The suggested conclusion is that revision B should almost always be preferred over
revision A. Even when the logic count comparison says the opposite, does the im-
proved timing of revision B outweight the difference of logic use, in particular as it’s
negligible compared with the FPGA’s capacity in most practical scenarios.

Revision XL, on the other hand, should be chosen only for applications that require its
bandwidth capacity, as it’s heavier in terms of logic consumption as well as timing.

The guide to defining a custom Xillybus IP core 15

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

The guide to defining a custom Xillybus IP core 16

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

The guide to defining a custom Xillybus IP core 17

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

The guide to defining a custom Xillybus IP core 18

http://xillybus.com/

	Introduction
	Defining custom IP cores
	Overview
	The device file's name
	Data width
	Synchronous or asynchronous stream
	DMA buffer size and count
	DMA acceleration
	Buffering time

	Scalability and logic resource consumption
	General
	Block RAMs
	Logic fabric resources

	Revision B and XL IP cores
	General
	Matching demo bundles
	Logic resource consumption

